Aprendizaje automático como herramienta para el manejo integrado de recursos naturales en un contexto de cambio climático
Palabras clave:
Aprendizaje automático; cambio climático; gestión integrada de recursos naturalesResumen
El manejo de recursos naturales en un contexto de cambio climático necesario para lograr un desarrollo sostenible en las comunidades y del medio ambiente, necesita de herramientas tecnológicas que impulsen los análisis en pro de la toma de decisiones. El Aprendizaje automático como herramienta para programar máquinas para un aprendizaje supervisado o no supervisado por distintos algoritmos, permite entrenar sistemas para la cambiante situación espacio-temporal y panorama desigual. Entendiendo sus fundamentos y modelos de entrenamiento y aprendizaje, puede utilizarse para clasificar o predecir según datos de entrada, generando decisiones de soporte. Por esto la actual vinculación del Aprendizaje automático con el manejo de los recursos naturales y el medio ambiente es de vital importancia y relevancia, y una revisión en cuanto a sus aplicaciones y fundamentos se presenta en el actual escrito.
Citas
Badage, Anuradha. 2018. Crop Disease Detection Using Machine Learning: Indian Agriculture. Int. Res. J. Eng. Technol.(IRJET) 5(9):866–69.
Barragán Agudelo, Anderson, and Sebastián Danilo Diaz Mujica. 2020. Interpretación de Imágenes de Satélite Con Técnicas de Machine Learning Para El Monitoreo de Cultivos.
Breiman, Leo. 2001. Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author). Statistical Science 16(3):199–231.
Campos Santelices, Matías Felipe. 2017. Aplicación de Técnicas de Machine Learning Para Predecir El Tamaño de Incendios Forestales.
Castillo, Duniel Delgado, Rainer Martín Pérez, Leonardo Hernández Pérez, Rubén Orozco Morález, and Juan Lorenzo Ginori. 2016. Algoritmos de Aprendizaje Automático Para La Clasificación de Neuronas Piramidales Afectadas Por El Envejecimiento. Revista Cubana de Informática Médica 8(3):559–71.
Chahid, Abderrazak, Ibrahima N’Doye, John E. Majoris, Michael L. Berumen, and Taous-Meriem Laleg-Kirati. 2021. Fish Growth Trajectory Tracking via Reinforcement Learning in Precision Aquaculture. ArXiv Preprint ArXiv:2103.07251.
Corvalán, Francisco Martin. 2019. Variación Del Contenido de Materia Orgánica En Suelos Agrícolas de Guaymallén Desde 1963 a 2018, Utilizando Machine Learning. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias.
Cui, Yanhai, Tianhong Pan, Shan Chen, and Xiaobo Zou. 2020. A Gender Classification Method for Chinese Mitten Crab Using Deep Convolutional Neural Network. Multimedia Tools and Applications 79(11):7669–84.
Díaz-Barrios, Heidy, Yania Alemán-Rivas, Leidys Cabrera-Hernández, Alejandro Morales-Hernández, María del Carmen Chávez-Cárdenas, and Gladys María Casas-Cardoso. 2015. Algoritmos de Aprendizaje Automático Para Clasificación de Splice Sites En Secuencias Genómicas. Revista Cubana de Ciencias Informáticas 9(4):155–70.
Donoho, David. 2017. 50 Years of Data Science. Journal of Computational and Graphical Statistics 26(4):745–66.
Farley, Scott S., Andria Dawson, Simon J. Goring, and John W. Williams. 2018. Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions. BioScience 68(8):563–76.
Flach, Peter. 2012. Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press.
Ge, Zhiqiang, Zhihuan Song, Steven X. Ding, and Biao Huang. 2017. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. Ieee Access 5:20590–616.
Gnoza Tansini, Natalie, and Marcelo Enrique Barberena Allietti. 2018. Estudio de Factibilidad Del Uso de Machine Learning Con Múltiples Fuentes de Datos En El Pronóstico Del Tiempo.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.
Grau-Merconchini, David, Odalis Moreno-Oliva, Diana P. Chala-Ramírez, Jorge Andrés Quintero-Toro, and Luis Bertel-Paternina. 2010. Sistema Basado En El Conocimiento Para La Planificación y Gestión Del Cultivo de Plátano En Colombia y Cuba. Ciencia En Su PC (2):101–13.
Hampton, Stephanie E., Carly A. Strasser, Joshua J. Tewksbury, Wendy K. Gram, Amber E. Budden, Archer L. Batcheller, Clifford S. Duke, and John H. Porter. 2013. Big Data and the Future of Ecology. Frontiers in Ecology and the Environment 11(3):156–62.
Hu, Zhuhua, Yiran Zhang, Yaochi Zhao, Mingshan Xie, Jiezhuo Zhong, Zhigang Tu, and Juntao Liu. 2019. A Water Quality Prediction Method Based on the Deep LSTM Network Considering Correlation in Smart Mariculture. Sensors 19(6):1420.
Kim, Sungwon, Meysam Alizamir, Mohammad Zounemat-Kermani, Ozgur Kisi, and Vijay P. Singh. 2020. Assessing the Biochemical Oxygen Demand Using Neural Networks and Ensemble Tree Approaches in South Korea. Journal of Environmental Management 270:110834.
Lausch, Angela, Andreas Schmidt, and Lutz Tischendorf. 2015. Data Mining and Linked Open Data–New Perspectives for Data Analysis in Environmental Research. Ecological Modelling 295:5–17.
Liakos, Konstantinos G., Patrizia Busato, Dimitrios Moshou, Simon Pearson, and Dionysis Bochtis. 2018. Machine Learning in Agriculture: A Review. Sensors 18(8):2674.
Machado, C. F., and Horacio Berger. 2012. Uso de Modelos de Simulación Para Asistir Decisiones En Sistemas de Producción de Carne. Revista Argentina de Producción Animal 32(1):87–105.
Manoharan, Hariprasath, Yuvaraja Teekaraman, Pravin R. Kshirsagar, Shanmugam Sundaramurthy, and Abirami Manoharan. 2020. Examining the Effect of Aquaculture Using Sensor‐based Technology with Machine Learning Algorithm. Aquaculture Research 51(11):4748–58.
Manoj, M., and Reeja Rajan. 2020. Precision aquaculture using iot & machine learning techniques. Agpe the royal gondwana research journal of history, science, economic, political and social science 2(1):105–11.
Molinaro, Carlos Alberto, and Augusto Antônio Fontanive Leal. 2018. Big Data, Machine Learning and Environmental Preservation: Technological Instruments in Defense of the Environment. VEREDAS DO DIREITO 15(31):201–24.
Monkman, Graham G., Kieran Hyder, Michel J. Kaiser, and Franck P. Vidal. 2019. Using Machine Vision to Estimate Fish Length from Images Using Regional Convolutional Neural Networks. Methods in Ecology and Evolution 10(12):2045–56.
Morales Martínez, Paola Cristina. 2020. Análisis de Cambio En La Cobertura Boscosa En El Municipio de Cartagena Del Chairá a Través de Imágenes Satelitales de 2016 y 2019 Por Medio de Algoritmos de Machine Learning.
Olden, Julian D., Michael K. Joy, and Russell G. Death. 2004. An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data. Ecological Modelling 178(3–4):389–97.
Parra Muñoz, Inés de la. 2020. Análisis de La Evolución de La Cubierta Vegetal En Las Minas Restauradas de Teruel a Partir de Teledetección y Un Modelo Machine Learning.
Pedraza Camelo, Juan Camilo. n.d. Prototipo de Un Modelo de Machine Learning Para La Predicción de Partículas de Contaminación Atmosférica Finas, En La Localidad de Kennedy En La Ciudad de Bogotá.
Pereña Pineda, Jaime. 2016. Modelo Predictivo. Machine Learning Aplicado Al Análisis de Datos Climáticos Capturados Por Una Placa Sparkfun.
Posada Valcárcel, Stiven Fernando. 2020. Análisis de Imágenes Satelitales de Observación de La Tierra y Datos Geoespaciales a Través de Machine Learning.
Rabinovich, Jorge E., Agustín Alvarez Costa, Ignacio J. Muñoz, Pablo E. Schilman, and Nicholas M. Fountain-Jones. 2021. Machine-Learning Model Led Design to Experimentally Test Species Thermal Limits: The Case of Kissing Bugs (Triatominae). PLoS Neglected Tropical Diseases 15(3):e0008822.
Ramírez, Neeldes Matos, and Yoan Martínez López. 2014. La Inteligencia Artificial. Nuevo Enfoque En La Evaluación de Las Máquinas En El Complejo Cosecha–Transporte-Recepción de La Caña de Azúcar. Revista Ingeniería Agrícola 4(2):60–64.
Ren, Qin, Xuanyu Wang, Wenshu Li, Yaoguang Wei, and Dong An. 2020. Research of Dissolved Oxygen Prediction in Recirculating Aquaculture Systems Based on Deep Belief Network. Aquacultural Engineering 90:102085.
Rode, Michael, Andrew J. Wade, Matthew J. Cohen, Robert T. Hensley, Michael J. Bowes, James W. Kirchner, George B. Arhonditsis, Phil Jordan, Brian Kronvang, and Sarah J. Halliday. 2016. Sensors in the Stream: The High-Frequency Wave of the Present.
Rodriguez-Galiano, V. F., M. Chica-Olmo, F. Abarca-Hernandez, Peter M. Atkinson, and C. Jeganathan. 2012. Random Forest Classification of Mediterranean Land Cover Using Multi-Seasonal Imagery and Multi-Seasonal Texture. Remote Sensing of Environment 121:93–107.
Salcedo-Sanz, Sancho, Pedram Ghamisi, María Piles, M. Werner, Lucas Cuadra, A. Moreno-Martínez, Emma Izquierdo-Verdiguier, Jordi Muñoz-Marí, Amirhosein Mosavi, and Gustau Camps-Valls. 2020. Machine Learning Information Fusion in Earth Observation: A Comprehensive Review of Methods, Applications and Data Sources. Information Fusion 63:256–72.
Sanjuán de Caso, Marta. n.d. Predicción de La Calidad Del Aire de La Ciudad de Madrid Mediante Técnicas de Machine-Learning.
Vargas-Crispin, Wilber Samuel, Edwin Montes-Raymundo, Manuel Castrejón-Valdez, and René Antonio Hinojosa-Benavides. 2021. Machine Learning Como Herramienta Para Determinar La Variación de Los Recursos Hídricos. Scientific Research Journal CIDI 1(1):56–69.
Verdesia-Hernández, Nelson, Ariel Hernández-Musa, Irina Blanco-Gil, and Alexis Lamz-Piedra. 2018. Sistema de Información Para El Control de La Biodiversidad de Variedades y Caracterización Del Cultivo de Frijol En Cuba. Cultivos Tropicales 39(2):28–33.
Witten, Ian H., and Eibe Frank. 2002. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Acm Sigmod Record 31(1):76–77.
Zhou, Chao, Kai Lin, Daming Xu, Lan Chen, Qiang Guo, Chuanheng Sun, and Xinting Yang. 2018. Near Infrared Computer Vision and Neuro-Fuzzy Model-Based Feeding Decision System for Fish in Aquaculture. Computers and Electronics in Agriculture 146:114–24.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Erick Armando Sedeño Bueno, Julio Madera Quintana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.