The use of the R language for data processing and the generation of maps on COVID-19
Keywords:
análisis espacio-temporal; covid-19; lenguaje R; mapas de coropletas; mapas de símbolos graduados.Abstract
Currently the world is submerged in the Global pandemic "COVID-19". The study of the behavior of this disease generates a lot of information that in some cases can be georeferenced in order to carry out a spatio-temporal analysis to reach conclusions. The Geographic Information Systems (GIS) are not the only ones capable of analyzing this georeferenced information, there are other alternatives such as the R language, which has undoubtedly become an important tool for spatio-temporal analysis and generation of maps because it has a large number of statistical techniques that facilitate data processing and map generation. The shapefile file format stores vector data in which the geometry of the terrain in question can be obtained. The evolution of this disease in each region or country is undoubtedly of interest to many investigations. Analyzing how the disease develops over the course of days, weeks, years and months is of great importance. This work shows some examples of how R can be used for the generation and animation of maps that allow analyzing the evolution of a disease such as COVID-19 as well as other related data.
References
Barroso, A. R., & Puebla, J. G. (1997). Los sistemas de información geograficos: origen y perspectivas (Vol. 7, p. 106). Madrid.
Bellosta, C. J. G. (2018). R para profesionales de los datos: una introducción.
Bivand, R. (2013). Package “ classInt ”, 1–12.
Bivand, R., Lewin-Koh, N., Pebesma, E., Archer, E., Baddeley, A., Bearman, N., … Rogerbivandnhhno, M. R. B. (2016). Package “ maptools ”, 81.
Durango Vanegas, C. E. (2013). Caracterización de datos espacio temporales en sistemas de información geográfica. Instituto de Sistemas Y Ciencias de La Decisión.
Hernández-Leal, E. J., Duque-Méndez, N. D., & Moreno-Cadavid, J. (2017). Big Data: an exploration of research, technologies and application cases. TecnoLógicas, 20(39), 17–24.
Hijmans, R. J. (2013). Introduction to the ’ raster ’ package ( version 2 . 1-49 ), (2008), 1–27.
Keitt, T., Rowlingson, B., & Bivand, R. (2013). Package “ rgdal ”, 01, 46.
Lamigueiro, Ó. P. (2014). Displaying time series, spatial, and space-time data with R. CRC Press.
Mas, J.-F. (2018). Análisis espacial con R : Usa R como un Sistema de Información Geográfica (p. 151).
Messy, T. (2019). Package “ tidyr .”
Murphy, L. D. (1995). Geographic information systems: are they decision support systems? In Twenty-Eighth Annual Hawaii International Conference on System Sciences (pp. 131–141). Hawaii.
Neuwirth, E. (2013). Package “ RColorBrewer ”, 1–5.
Olaya, V. (2014). Sistemas de Información Geográfica (p. 798).
Paradis, E., & Ahumada, J. A. (2003). R para Principiantes.
Reinoso Lorente, Á. (2020). Sistema informático para el procesamiento de datos de enfermedades de la provincia de Guayas, Ecuador y visualización en mapas. Universidad Central Marta Abreu de Las Villas.
Salmerón Gómez, R., & others. (2008). Análisis estadístico de datos espacio-temporales mediante modelos funcionales de series temporales.
Santana, J. S., & Farfán, E. (2014). El Arte de Programar en R: Un lenguaje para la estadística (p. 197).
Stadler, M. M. (2002). TOPOLOGÍA GENERAL (p. 200). Managua. Retrieved from http://www.ehu.es
Vázquez Rodríguez, R. (2015). Nuevos métodos para el procesamiento y análisis de información geográfica. Universidad de Granada.
Wickham, H. (2020). Package “ plyr .”
Wickham, H., & Chang, W. (2015). Package “ggplot2.”
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Alvaro Reinoso Lorente, Romel Vázquez Rodríguez, Carlos Pérez Risquet
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.