Recommender System in a Transactional Analytical Solution for Health Care and Health Promotion
Keywords:
Big Data; Machine Learning; Mobile Computing; Recommender SystemsAbstract
The Sanologia, born at Havana University, proposes a new conception of people’s health and aims to enrich their lifestyle. The broad development of the information sciences and the maturity that has reached the proposed approach constitute the bases for the creation of new computational solutions. In the present paper, a mathematical-computational solution was conceived and designed for the application of the approach proposed by Sanologia based on NoSQL databases. The solution is characterized to favor the access of the users from diverse locations via mobile devices, from the instrumentation of a distributed architecture and the use of flexible data models. From the operational application, it is feasible to analyze the medical and social data collected in an automated way. Knowledge-based, content-based and collaborative filtering recommendation techniques are hybridized in a recommender system, which using machine learning and natural language processing is incorporated in order to support the decision-making process. The proposed solution is capable of offering personalized recommendations taking into account the users’ historical data, their behavior and the similarity with other users. The validity of the solution was verified by the implementation of a functional prototype and a set of experiments.
References
Aggarwal, C. C. (2016). Recommender Systems: The Textbook. IBM T.J. Watson Research Center: Springer. DOI:10.1007/978-3-319-29659-3
Aldereguía Henriques, J. C. (1993). Salud y Sanología en Médicas de Familia. INTERCIENCIA.
Amable Ambrós, Z. (2012). Sanología Nueva forma de pensar y actuar en salud. Universidad Nacional Autónoma de México: ISBN: 978-807-02-3634-1.
Francesco Ricci, L. R. (2015). Recommender Systems Handbook ( Second Edition ed.). New York: Springer Science+Business Media . doi:10.1007/978-1-4899-7637-6
Guillot Jiménez, J. (2014). Solución computacional transaccional para la promoción de la salud y el bienestar humanos. Universidad de La Habana: Tesis de Maestría en Ciencias de la Computación.
Jure Leskovec, A. R. (2014). Mining of Massive Datasets. Stanford University Course.
Morisio, E. C. (2019). Hybrid Recommender Systems: A Systematic Literature Review. CoRR, (p. abs/1901.03888).
Nikzad–Khasmakhi, N. a.–D. (2019). The state-of-the-art in expert recommendation systems. Engineering Applications of Artificial Intelligence. Elsevier Ltd.
Pokorný, J. (2013). NoSQL databases: a step to database scalability in web environment. International Journal of Web Information Systems.
Quintana-Wong, C. (2017). Solución Analítica para la Promoción de la Salud y el Bienestar Humanos. Universidad de La Habana: Tesis de Licenciatura en Ciencia de la Computación.
Rabanillo Echaniz, A. (2018). Reingienería de las Soluciones Transaccional y Analítica para la Promoción de la Salud y el Bienestar Humanos. Universidad de La Habana: Tesis de Licenciatura en Ciencia de la Computación.
Sullivan, D. (2015). NoSQL for Mere Mortals. Addison Wesley.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Claudia Quintana-Wong, Lucina García Hernández, Amelia Rabanillo Echaniz, Javier Guillot Jiménez, Zoraida Amable Ambrós
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.