Time Windows Analysis in Trend Detection Systems

Authors

Keywords:

metaheuristcs, time windows, trend detection systems, Twitter

Abstract

Microblogging services are potential sources of updated data. Their constant use has turned them into a suitable field of action to detect trends. Most of the efforts employed in developing Trend Detection Systems (TDS) point to the definition of the models. However, they have overlooked the analysis of important elements such as time windows, which, misconfigured, can cause the system to malfunction. In this research, the influence of the use of static time windows in TDS is analyzed. A methodology is defined to generate window configurations. This methodology modeled as an optimization problem, construct window configurations capable of adapting to the flow of data. As result, the superiority of non-static windows over static ones is reflected and the decisive role played by the time windows in the TDS is emphasized.

References

Abdelhaq, H., Sengstock, C. & Gertz, M. (2013). Eventweet: Online localized event detection from twitter. Proceedings of the VLDB Endowment, vol. 6, no. 12, pp. 1326–1329.

Allan, J. (2002). Introduction to topic detection and tracking. Topic detection and tracking, pp. 1–16.

Allan, J., Carbonell, J.G., Doddington, G., Yamron, J. & Yang, Y. (1998). Topic detection and tracking pilot study final report. Carnegie Mellon University.

Atefeh, F., & Khreich, W. (2015). A survey of techniques for event detection in twitter. Computational Intelligence, 31(1), 132-164.

Bollen, J., Mao, H. & Pepe, A. (2011). Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. Icwsm, vol. 11, pp. 450–453.

Figueira, Á., Guimarães, N. & Torgo, L. (2018). Current State of the Art to Detect Fake News in Social Media: Global Trendings and Next Challenges. In WEBIST, pp. 332-339.

Fiscus, J. G. & Doddington, G. R. (2002). Topic detection and tracking evaluation overview. In J. G. Fiscus, & G. R. Doddington, Topic detection and tracking. Springer, pp. 17-31.

Guzmán, J. & Poblete, B. (2013). On-line Relevant Anomaly Detection in the Twitter Stream: An Efficient Bursty Keyword Detection Model. En: event-place: Chicago, Illinois, Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description [en línea]. New York, NY, USA: ACM, pp. 31–39. ISBN 978-1-4503-2335-2. DOI 10.1145/2500853.2500860. Disponible en: http://doi.acm.org/10.1145/2500853.2500860.

Hasan, M., Orgun, M. A. & Schwitter, R. (2018). A survey on real-time event detection from the twitter data stream. Journal of Information Science, 44(4), pp. 443-463.

Hendrickson, S., Kolb, J., Lehman, B. y Montague, J. (2015). Trend detection in social data. Twitter Blog.

Laguna, J.O., Olaya, A.G. & Borrajo, D. (2011). A dynamic sliding window approach for activity recognition. International Conference on User Modeling, Adaptation, and Personalization. S.l.: Springer, pp. 219–230.

Lau, J.H., Collier, N. & Baldwin, T. (2012). On-line Trend Analysis with Topic Models:$backslash$# twitter Trends Detection Topic Model Online. COLING. S.l.: s.n., pp. 1519–1534.

Lee, R., & Sumiya, K. (2010). Measuring Geographical Regularities of Crowd Behaviors for Twitter-based Geo-social Event Detection. In Proceedings of the 2Nd ACM SIGSPATIAL International Workshop on Location Based Social Networks. New York, NY, USA: ACM, pp. 1-10.

Linares, R.C., Morffis, A.P. & Cruz, Y.A. (2018). Distribución de Ventanas en Sistemas de Detección de Tendencias: Análisis y Propuesta para un Modelo de Configuraciones. Licenciatura. S.l.: Universidad de La Habana.

Mathioudakis, M. & Koudas, N. (2010). Twitter Monitor: Trend Detection over the Twitter Stream. En: event-place: Indianapolis, Indiana, USA, Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data [en línea]. New York, NY, USA: ACM, pp. 1155–1158. ISBN 978-1-4503-0032-2. DOI 10.1145/1807167.1807306. Disponible en: http://doi.acm.org/10.1145/1807167.1807306.

Mederos, O., Hernández, A. & Almeida-Cruz, Y. (2013). Detección de tópicos en Twitter. Tesis de Licenciatura, Facultad de Matemática y Computación, Universidad de La Habana.

Montes, M., Gelbukh, A. & López, A.L. (2001). Mining the news: trends, associations, and deviations. Computación y Sistemas, vol. 5, no. 1, pp. 14–24.

Osborne, M., Petrovic, S., McCreadie, R., Macdonald, C. & Ounis, I. (2012). Bieber no more: First story detection using Twitter and Wikipedia. In SIGIR 2012 Workshop on Time-aware Information Access.

Ozdikis, O., Senkul, P., & Oguztuzun, H. (2012). Semantic expansion of tweet contents for enhanced event detection in twitter. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 20-24). IEEE.

Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D. & Sperling, J. (2009). Twitterstand: news in tweets. Proceedings of the 17th acm sigspatial international conference on advances in geographic information systems. S.l.: ACM, pp. 42–51.

Talbi, E.-G., 2009. Metaheuristics. From Desing to Implementation. New Jersey: Wiley. John Wiley & Sons, Inc., Publication.

Tejeda, R.G. & Cruz, Y.A. (2016). Detección de tendencias en Twitter. Licenciatura. S.l.: Universidad de La Habana.

Twitter Usage Statistics. Internet Live Stats [en línea], (2019). [Consulta: 10 diciembre 2019]. Disponible en: https://www.internetlivestats.com/twitter-statistics/#source.

Weiler, A., Grossniklaus, M., & Scholl, M. H. (2015). Evaluation measures for event detection techniques on twitter data streams. In British International Conference on Databases. Springer, Cham, pp. 108-119.

Wolfe, L. (2019). Twitter User Statistics for 2019. The Balance Careers [en línea]. [Consulta: 10 diciembre 2019]. Disponible en: https://www.thebalancecareers.com/twitter-statistics-2008-2009-2010-2011-3515899

Xun Wang, J.J., Feida Zhu & LI, S. (2011). Real Time Event Detection in Twitter. Springer-Verlag, vol. 21.

Zubiaga, A., Spina, D., Martinez, R., & Fresno, V. (2014). Real-time classification of twitter trends. Journal of the Association for Information Science and Technology, vol. 66, no. 3, pp. 462–473.

Published

2020-04-24

How to Cite

Cruz-Linares, R., Piad-Morffis, A., & Almeida-Cruz, Y. (2020). Time Windows Analysis in Trend Detection Systems. Revista Cubana De Transformación Digital, 1(1), 132–148. Retrieved from https://rctd.uic.cu/rctd/article/view/38

Issue

Section

Original Articles - Technologies Artificial Intelligence