Intelligent system for mortality prediction in Intensive Care Units

Authors

  • María del Rocío Vicente González Universidad Central "Martha Abreu" de Las Villas https://orcid.org/0009-0007-8841-0950
  • María Matilde García Lorenzo Universidad Central "Martha Abreu" de Las Villas
  • Rafael Fernández Fleites Universidad Central "Martha Abreu" de Las Villas
  • Roberto Vicente Rodríguez Universidad Central "Martha Abreu" de Las Villas

Keywords:

Intensive Care Unit, Multilayer Perceptron, LIME, Mortality prediction, Explainable artificial intelligence

Abstract

Early mortality prediction in Intensive Care Units (ICU) using machine learning techniques has become a key tool for supporting clinical decision-making in highly dynamic and critical healthcare environments. In this study, a Multilayer Perceptron (MLP) neural network model was developed to predict mortality in the ICU of the "Arnaldo Milián Castro" University Hospital in Villa Clara, Cuba. Preprocessing techniques were applied to handle inconsistencies in clinical data, along with balancing methods such as BorderlineSMOTE to address class imbalance. The model achieved notable metrics in field tests: sensitivity above 85%, area under the ROC curve (AUC-ROC) of 0.93, and high overall accuracy. Additionally, the LIME method (Local Interpretable Model-Agnostic Explanations) was implemented to enhance the interpretability of predictions. The results demonstrate the system's potential to identify at-risk patients with minimal error margin, providing a valuable support tool for medical staff in intensive care settings.

References

Azar, A. T., Elshazly, H. I., Hassanien, A. E., & Elkorany, A. M. (2014). A random forest classifier for lymph diseases. Computer methods and programs in biomedicine, 113(2), 465-473.

Barredo Arrieta, A., Tabik, S., García López, S., Molina Cabrera, D., Herrera Triguero, F., & Díaz Rodríguez, N. A. (2019). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. https://digibug.ugr.es/handle/10481/77982

Belciug, S., & Gorunescu, F. (2020). Era of Intelligent Systems in Healthcare. En S. Belciug & F. Gorunescu, Intelligent Decision Support Systems—A Journey to Smarter Healthcare (Vol. 157, pp. 1-55). Springer International Publishing. https://doi.org/10.1007/978-3-030-14354-1_1

Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58-65. https://doi.org/10.1145/3448250

Došilović, F. K., Brčić, M., & Hlupić, N. (2018). Explainable artificial intelligence: A survey. 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), 0210-0215. https://ieeexplore.ieee.org/abstract/document/8400040/

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from Imbalanced Data Sets. Springer International Publishing. https://doi.org/10.1007/978-3-319-98074-4

Harnecker Fontecilla, M. B. (2017). Diseño y construcción de un modelo de predicción de mortalidad en pacientes adultos mayores hospitalizados en Unidad de Cuidados Intensivos del Hospital Clínico de la Universidad de Chile.

Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1), 160035. https://doi.org/10.1038/sdata.2016.35

Khorasani, M., Abdou, M., & Hernández Fernández, J. (2022). Getting started with streamlit. En Web Application Development with Streamlit: Develop and Deploy Secure and Scalable Web Applications to the Cloud Using a Pure Python Framework (pp. 1-30). Springer.

Nistal-Nuño, B. (2021). Artificial intelligence forecasting mortality at an intensive care unit and comparison to a logistic regression system. Einstein (São Paulo), 19, eAO6283. https://doi.org/10.31744/einstein_journal/2021AO6283

Ortigossa, E. S., Gonçalves, T., & Nonato, L. G. (2024). EXplainable artificial intelligence (XAI)–From theory to methods and applications. IEEE Access.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). «Why Should I Trust You?»: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135-1144. https://doi.org/10.1145/2939672.2939778

Sánchez Martín, D. (2024). Algoritmos de selección de características en aprendizaje automático. https://gredos.usal.es/handle/10366/164911

Shneiderman, B. (2020). Human-centered artificial intelligence: Three fresh ideas. AIS Transactions on Human-Computer Interaction, 12(3), 109-124.

Vieira, P. M., & Rodrigues, F. (2024). An automated approach for binary classification on imbalanced data. Knowledge and Information Systems, 66(5), 2747-2767. https://doi.org/10.1007/s10115-023-02046-7

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295-316. https://doi.org/10.1016/j.neucom.2020.07.061

Published

2025-12-31

How to Cite

Vicente González, M. del R., García Lorenzo, M. M. ., Fernández Fleites, R., & Vicente Rodríguez, R. (2025). Intelligent system for mortality prediction in Intensive Care Units. Revista Cubana De Transformación Digital, 6, e296 1–11. Retrieved from https://rctd.uic.cu/rctd/article/view/296

Issue

Section

Originial paper