Detection of diabetic foot ulcers using artificial intelligence

Authors

  • Edgar Moya Caceres Universidad Central "Martha Abreu" de Las Villas
  • Yusely Ruiz Gonzalez Universidad Central "Martha Abreu" de Las Villas
  • Maria Matilde Garcia Lorenzo Universidad Central "Martha Abreu" de Las Villas

Keywords:

Diabetic foot ulcers, Object detection, Deep learning, DFUC2020

Abstract

Diabetic foot ulcers (DFUs) are one of the most common and devastating complications of diabetes, representing a considerable challenge for healthcare systems and significantly affecting patients' quality of life. This paper is aimed to address the application of artificial intelligence techniques for DFU detection. Deep learning (DL) models were implemented, specifically YOLOv8, in its m and l variants, and standard and deformable convolutions Faster R-CNN. These models were optimized using data augmentation and hyperparameter tuning techniques. The dataset provided by the Diabetic Foot Ulcers Grand Challenge 2020 (DFUC 2020) was used for training. Additionally, a national image database was used to evaluate the model's effectiveness in the local context. In the training and validation stages, mAP greater than 0.70 was obtained for all trained models, being the Yolov8l model the best performed (mAP=0.799). The external test with national data demonstrated generalization power, granting accuracy values ​​of 0.856, sensitivity of 0.789, F1 score of 0.821, and an mAP50 of 0.839. A web application was also developed using Streamlit, providing an interactive interface for analyzing DFU images. The object detection DL models implemented proved to be effective tools for accurately identifying DFUs. The developed application effectively integrates the best performed model, offering an intuitive interface for healthcare professionals.

References

Juarez-Salinas, J. J., Solis-Sánchez, L. O., Castañeda-Miranda, R., Ortiz-Rodriguez, J. M., & Rosales, H. G. (2014). Algoritmo de procesamiento digital de imágenes para la detección y evaluación de heridas de pie diabético. Difu100ci@, Revista de difusión científica, ingeniería y tecnologías, 8(1), 11–16.

Sun, H., Heng, H., Liu, X., Geng, H., & Liang, J. (2023). Evaluation of the healing potential of short-term ozone therapy for the treatment of diabetic foot ulcers. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1304034

Tekkeşin, A. İ. (2019). Artificial intelligence in healthcare: Past, present and future. Anatolian Journal of Cardiology, 22(Suppl 2), 8–9.

Manchester Metropolitan University. (2024, July 2). 28th UK Conference on Medical Image Understanding and Analysis - MIUA. MIUA. https://miua2024.github.io/#challenges

Yap, M. H., et al. (2021). Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Computers in Biology and Medicine, 135, 104596. https://doi.org/10.1016/j.compbiomed.2021.104596

Cabal Mirabal, C. A., González Dalmau, E. R., Oramas Diaz, L., Herrera Martinez, L. S., Berlanga Acosta, J. A., & Fernández Montequín, J. I. (2019). Organización Mundial de la Propiedad Intelectual. Marco estereotáxico para extremidades. Patente de Cuba PCT/CU2016/050002, 2017. Acceso, 31(07).

García Gómez, G., et al. (2019). Mejoramiento de contraste y segmentación en imágenes de úlceras del pie diabético. Revista Cubana de Angiología y Cirugía Vascular, 20.

Dutta, A., Zisserman, A., & Gupta, A. (2024, September 19). VGG Image Annotator (VIA). GitHub. https://github.com/ox-vgg/via

Liu, L., et al. (2020). Deep learning for generic object detection: A survey. International Journal of Computer Vision, 128(2), 261–318. https://doi.org/10.1007/s11263-019-01247-4

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and flexible image augmentations. Information (Switzerland), 11(2). https://doi.org/10.3390/info11020125

Chen, K., et al. (2019). MMDetection: Open MMLab Detection Toolbox and Benchmark.

OpenMMLab. (2024, October 15). OpenMMLab: Open Source Computer Vision Toolbox. https://openmmlab.com/

Jocher, G., Chaurasia, A., & Qiu, J. (2023, August 24). YOLO by Ultralytics. https://github.com/ultralytics/ultralytics

Sarmun, R., et al. (2024). Diabetic foot ulcer detection: Combining deep learning models for improved localization. Cognitive Computation, 16(3), 1413–1431. https://doi.org/10.1007/s12559-024-10267-3

Cassidy, B., et al. (2021). The DFUC 2020 dataset: Analysis towards diabetic foot ulcer detection. touchREVIEWS in Endocrinology, 17(1), 5. https://doi.org/10.17925/EE.2021.17.1.5

Streamlit. (2024, October 22). Streamlit: The fastest way to build and share data apps. https://streamlit.io/

Published

2025-12-31

How to Cite

Moya Caceres, E., Ruiz Gonzalez, Y., & Garcia Lorenzo, M. M. (2025). Detection of diabetic foot ulcers using artificial intelligence. Revista Cubana De Transformación Digital, 6, e295 1–9. Retrieved from https://rctd.uic.cu/rctd/article/view/295

Issue

Section

Originial paper