Proposal for an industrial monitoring architecture oriented to Industry 4.0

Authors

  • Ramón Quiza Universidad de Matanzas
  • Onell Hernández Ramírez Universidad de Matanzas
  • Yanelys Cuba Arana Universidad de Matanzas
  • Marcelino Rivas Santana Universidad de Matanzas

Keywords:

Industrial monitoring, Industry 4.0, Software architecture, Artificial intelligence

Abstract

In the work, an industrial monitoring architecture is proposed, based on concepts of the so-called fourth industrial revolution or Industry 4.0. It is organized in a modular way, to facilitate its use and guarantee its scalability. The design of the architecture had, as a premise, to guarantee the requirements of lightness, open code and use of artificial intelligence tools. For achieving the first requirement, MQTT was chosen, as it is a lightweight message protocol. For their part, all the tools and code libraries used are permissive and (except one of them) compatible with the Debian free software guidelines. Finally, the conception of the modeling module guarantees the possibility of using various artificial intelligence tools to perform classifications and regressions, which allow the indirect monitoring of variables. For a preliminary validation of the system, it has been deployed in a monitoring system of the equatorial welded joint dimensions in 10 kg liquefied gas cylinders. These dimensions are determined, indirectly, through the digital processing of the captured images, by using a convolutional neural network. The deployed system widely showed its capability to fulfill the monitoring task for which it was designed.

References

Becker, A., Brown J., Bricheno, L., Wolf, J. (2020). Guidance note on the application of coastal monitoring for small island developing states: Part of the NOC-led project “Climate Change Impact Assessment: Ocean Modelling and Monitoring for the Caribbean CME states”, 2017-2020; under the Commonwealth Marine Economies (CME) Programme in the Caribbean. Southampton, National Oceanography Centre, 40pp. (National Oceanography Centre Research and Consultancy Report, 74). https://nora.nerc.ac.uk/id/eprint/527224

Conlin, M. P., Adams, P. N., Wilkinson, B., Dusek, G., Palmsten, M. L., & Brown, J. A. (2020). SurfRCaT: A tool for remote calibration of pre-existing coastal cameras to enable their use as quantitative coastal monitoring tools. SoftwareX, 12, 100584. https://doi.org/10.1016/j.softx.2020.100584

Esri Support. (s.f.). Definición de Rectificación Geográfica. Recuperado de https://support.esri.com/es-es/gis-dictionary/georectification

Harley, M. D., Kinsela, M. A., Sánchez-García, E., & Vos, K. (2019). Shoreline change mapping using crowd-sourced smartphone images. Coastal Engineering, (150): 175-189. https://doi.org/10.1016/j.coastaleng.2019.04.003

Heaney, N. (2021). Towards the conversion of CoastSnap to an open source citizen science tool for coastal monitoring. University of Edimburgh.

Inga Santiváñez, R. M. (2015). El criterio de información de Akaike en el análisis de datos categorizados (Tesis doctoral). Universidad Complutense de Madrid, España. Recuperado de: https://eprints.ucm.es/id/eprint/53832/1/5320609308.pdf

Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., & Floc’h, F. (2016). Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters, 43(5): 2135-2143. https://doi.org/10.1002/2015GL067492

Merlotto, A, & Bértola, GR. (2009). Coastline evolution at Balneario Parque Mar Chiquita, Argentina. Ciencias marinas, 35(3), 271-286. Recuperado de: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802009000300003&lng=es&tlng=, 15 de julio de 2023,

Morales, V. (2020). Modelización de series univariantes SARIMA. Series de Tiempo con R. Recuperado de https://bookdown.org/victor_morales/SeriesdeTiempo/modelizaci%C3%B3n-de-series-univariantes-sarima.html

Virguez, J. W. (2018). Modelo de pronóstico PIB financiero. Recuperado de: http://hdl.handle.net/11371/2130.

Published

2023-09-30

How to Cite

Quiza, R. ., Hernández Ramírez, O., Cuba Arana, Y., & Rivas Santana, M. (2023). Proposal for an industrial monitoring architecture oriented to Industry 4.0. Revista Cubana De Transformación Digital, 4(3), 222:1–10. Retrieved from https://rctd.uic.cu/rctd/article/view/222

Issue

Section

Originial paper