Wireless sensor network for biosignal monitoring

Authors

  • Adalberto Ortega Eguino ETECSA
  • Yanosky González Tristá ETECSA
  • Miguel Mendoza Reyes ETECSA

Keywords:

Biosignal Processing, Wireless Sensor Network, Telemedicine

Abstract

The development of low-cost electronic modules with varied characteristics, the availability of single-board computers, SBC, along with the free access to their programming tools, have supported the generalization of remote variable monitoring and control systems. Among the later, wireless sensor networks, WSAN, play an important role in the implementation of the Internet of Things (IoT) due, amid other reasons, to the ease of implementation and the flexibility they can provide. The design of a network of this type, dedicated to the remote recording of physiological variables and their processing, must meet certain requirements that depend on the characteristics of the variable to be measured and the conditions in which it is acquired. Real-time operation, a common need in biosignal measurement systems, is challenging from the point of view of device programming, associated circuit design, wireless network configuration, and other factors that can be modified and must be evaluated in practice. This work presents the evaluation of the performance of a WSAN network for the measurement and processing of biosignals, and its dependence on the possible network configurations, types of signals, processing algorithms; the possibility of extending its scope to IoT environments is also analyzed. The results indicate the feasibility of the proposal and its flexibility to be adapted to different environments.

References

Abib, J. C., & Anacleto, J. C. (2014). Improving Communication in Healthcare: A case study. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3336–3341.

Akay, M. (1998). Time frequency and wavelets in biomedical signal processing. IEEE press.

Beevers, G., Lip, G. Y., & O’Brien, E. (2001). Blood pressure measurement. Sphygmomanometry: Factors common to all techniques. BMJ, 322, 981–985.

Díaz, D. F. D., Varela, Á. D. B., Rodríguez, A. C., & Franco, Y. O. S. (2017). Diseño de un módulo para la adquisición y transmisión inalámbrica de bioseñales. Telemática, 16(2), 39–53.

Elayan, H., Shubair, R. M., & Kiourti, A. (2017). Wireless sensors for medical applications: Current status and future challenges. 2017 11th European Conference on Antennas and Propagation (EUCAP), 2478–2482. https://doi.org/10.23919/EuCAP.2017.7928405

Electrophysiology, T. F. of the E. S. of C. the N. A. S. of P. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065.

Hunkeler, U., Truong, H. L., & Stanford-Clark, A. (2008). MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08), 791–798.

Ko, J., Lu, C., Srivastava, M. B., Stankovic, J. A., Terzis, A., & Welsh, M. (2010). Wireless sensor networks for healthcare. Proceedings of the IEEE, 98(11), 1947–1960.

Kodali, R. K., & Soratkal, S. (2016). MQTT based home automation system using ESP8266. 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 1–5.

Marchiando, R. J., & Elston, M. P. (2003). Automated ambulatory blood pressure monitoring: Clinical utility in the family practice setting. American Family Physician, 67(11), 2343–2350.

Merletti, R., & Parker, P. J. (2004). Electromyography: Physiology, engineering, and non-invasive applications (Vol. 11). John Wiley & Sons.

Morales, R. D. P., Morales, D. Á., & Grisales, V. H. (2009). Caracterización de señales electromiográficas para la discriminación de seis movimientos de la mano. Scientia et Technica, 2(42), Article 42.

Negra, R., Jemili, I., & Belghith, A. (2016). Wireless body area networks: Applications and technologies. Procedia Computer Science, 83, 1274–1281.

Northrop, R. B. (2001). Measurement of electrical potentials and magnetic fields from the body surface. In Noninvasive instrumentation and measurement in medical diagnosis (pp. 75–168). CRC Press.

Prutchi, D., & Norris, M. (2005). Design and development of medical electronic instrumentation: A practical perspective of the design, construction, and test of medical devices. John Wiley & Sons.

Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.

Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks: Technology, protocols, and applications. John wiley & sons.

Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications (Vol. 8). Academic Press.

Valdés, M. J. G. (2010). Desarrollo de Monitores de Paciente en Cuba. Revista Ingeniería Electrónica, Automática y Comunicaciones ISSN: 1815-5928, 31(1), 42–48.

Wang, P. (2008). The real-time monitoring system for in-patient based on zigbee. 2008 Second International Symposium on Intelligent Information Technology Application, 1, 587–590.

Weller-Fahy, D. J., Borghetti, B. J., & Sodemann, A. A. (2014). A survey of distance and similarity measures used within network intrusion anomaly detection. IEEE Communications Surveys & Tutorials, 17(1), 70–91.

Published

2022-03-30

How to Cite

Ortega Eguino, A., González Tristá, Y., & Mendoza Reyes, M. (2022). Wireless sensor network for biosignal monitoring. Revista Cubana De Transformación Digital, 3(1), e160. Retrieved from https://rctd.uic.cu/rctd/article/view/160