A brief summary about the current state of Artificial Intelligence
Keywords:
Artificial Intelligence, digital transformationAbstract
The main goal of this paper is to present a global view of the current state of Artificial Intelligence, its most important methods and achievements, as well as its applications in the solution of several socio-economics and scientific problems. Some tendencies of its development are discussed and the consequent challenges for the human society, because of its insertion in all dimensions of the human life, including the prevention of possible negative effects in the future. This conceptual presentation serves as a presentation of the papers included in this number of the journal.
References
Abdollahi B. y Nasraoui, O. (2018). Transparency in Fair Machine Learning: the Case of Explainable Recommender Systems In Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent, Jianlong Zhou and Fang Chen (Eds.). Springer International Publishing, Cham, 21–35
Alexander, V. et al. (2018). Why trust an algorithm? Performance, cognition, and neurophysiology. Computers in Human Behavior 89: 278-288
Asilomar (2017). AI Principles. Future of Life Institute, Recuperado de: https://futureoflife.org/ai-principles/
Axel-Montes, G. y Goertzel, B. (2019). Distributed, decentralized, and democratized artificial intelligence. Technological forecasting and Social Sciences 141:354-358
Baptiste-Lamy, J. et al. (2019). Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach. AI in Medicine 94:42-53.
Barredo-Arrieta, A., Díaz-Rodríguez, N., Del-Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatilaf, R. y Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58: 82–115. doi:10.1016/j.inffus.2019.12.012
Bughin, J. et al. (2017). AI: the next digital frontier. Discussion paper. McKinsey Global Institute.
Cannon, J. (2019). Report shows consumers don’t trust artificial intelligence, Recuperado de: https://www.fintechnews.org/report-shows-consumers-dont-trust-artificial-intelligence/
Chen, Z. y Liu, B. (2018). Lifelong Machine Learning. Second Edition, Morgan & Claypool. Print 1939-4608 Electronic 1939-4616. doi:10.2200/S00832ED1V01Y201802AIM037, p. 209.
Dietterich. T. G. (2017). Steps Toward Robust Artificial Intelligence. AI MAGAZINE, FALL.
EISMD (2018). AI4People’s Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations” (november). Recuperado de: http://www.eismd.eu/wp-content/uploads/2018/11/ Ethical-Framework-for-a-good-AI-Society.pdf.
Samoili, S., López-Cobo, M., Gómez, E., De Prato, G., Martínez-Plumed, F.,y Delipetrev, B. (2020). AI Watch. Defining Artificial Intelligence. Towards an operational definition and taxonomy of artificial intelligence, EUR 30117 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-17045-7, doi:10.2760/382730, JRC118163.
Guidotti, R. et al. (2018). A Survey of Methods for Explaining Black Box Models. ACM Comput. Surv. 51(5):93 (august), doi: 10.1145/3236009.
Hassabis, D. et al. (2017). Neuroscience-Inspired Artificial Intelligence. Neuron 95, July(19): 245-258.
Hengstler, M. et al. (2016). Applied artificial intelligence and trust. The case of autonomous vehicles and medical assistance devices. Technological Forecasting & Social Change 105: 105–120
Hibbard, B. (2012). Avoiding Unintended AI Behaviors. Lecture Notes in Artificial Intelligence, 7716: 107-116
Holliday, D., et al. (2016). User trust in intelligent systems: A journey over time. In Proceedings of the 21st International Conference on Intelligent User Interfaces. 164-168. New York, USA: ACM
Hossein, M. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons 61, 577—586. Recuperado de: https://www.ibm.com/watson
IBM (2018). Trusted AI. Recuperado de: https://www.research.ibm.com/artificial-intelligence/trusted-ai/
IEEE (2018). IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems. IEEE. Recuperado de: https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead_general_principles.pdf
Jay-Kuo, C.C. et al. (2019). Interpretable convolutional neural networks via feedforward design. J. Vis. Commun. Image R. 60, 346–359
Karmakar, B., y Pal, N.R. (2018). How to make a neural network say “Don’t know”. Information Sciences 430–431, 444–466
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444
Lee, Y. et al. (2019). Egoistic and altruistic motivation: How to induce users’ willingness to help for imperfect AI. Computers in Human Behavior 101, 180-196
Li, Y. y Vasconcelos, N. (2019). REPAIR: Removing Representation Bias by Dataset Resampling. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9572-9581. Recuperado de: arXiv: 1904.07911.
Lieto, A. et al. (2018). The role of cognitive architectures in general artificial intelligence. Cognitive Systems Research 48, 1–3
Luke, S. (2012). Essentials of Metaheuristics. ISBN: 978-0-557-14859-2. Recuperado de: http://cs.gmu.edu/∼sean/book/metaheuristics/
Mankowitz, D.J. et al. (2018). Unicorn: Continual learning with a universal, off-policy agent. Recuperado de: arXiv: 1802.08294v2.
McCarthy, J., Minsky, M.L., Rochester, N. y Shannon, C.E. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. August 31, 1955. Recuperado de: http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
Mehrabi, N. et al. (2019). A Survey on Bias and Fairness in Machine Learning. Recuperado de: arXiv: 1908.09635v2
Montavon, G. et al. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing 73, 1–15
Pichai, S. (2018). AI at Google: our principles. June 7. Recuperado de: https://www.blog.google/technology/ai/ai-principles/
Rodriguez, J. (2018). Towards AI Transparency: Four Pillars Required to Build Trust in Artificial Intelligence Systems. Recuperado de: https://www.linkedin.com/pulse/towards-ai-transparency-four-pillars-required-build-trust-rodriguez
Rusell, S. y Norvig, P. (2010) Artificial Intelligence: a modern approach. Pearson Education
Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489
Silver, D. et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144
Stone, P. et al. (2016). Artificial intelligence and Life in 2030, in One Hundred Year Study on Artificial Intelligence (AI100). Report of the 2015 Study Panel, Stanford University. Recuperado de: https://ai100.stanford.edu
Tommasi, T. et al. (2017). A deeper look at dataset bias. In Domain Adaptation in Computer Vision Applications, 37–55. Springer
Tomsett, R. et al. (2020). Rapid Trust Calibration through Interpretable and Uncertainty-Aware AI. PATTER 1, July: 1-9. doi:10.1016/j.patter.2020.100049
Wang, W., y Siau, K. (2018). Trusting Artificial Intelligence in Healthcare. Twenty-fourth Americas Conference on Information Systems, New Orleans.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rafael Bello Pérez, Alejandro Rosete Suárez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.