Módulo de captura de imágenes para monitoreo de procesos industriales basado en tecnologías de Industria 4.0

Autores/as

  • Onell Hernández Ramírez Universidad de Matanzas
  • Ramón Quiza Sardiñas Universidad de Matanzas
  • Yanelys Cuba Arana Universidad de Matanzas
  • Marcelino Rivas Santana Universidad de Matanzas

Palabras clave:

procesamiento digital de imágenes, Industria 4.0, monitoreo industrial, protocolo MQTT

Resumen

El presente trabajo se dirige a la implementación de un módulo de captura y preprocesamiento de imágenes para monitoreo de procesos industriales. Dicho módulo forma parte de una arquitectura de monitoreo ligera, abierta e inteligente, basada en tecnologías de Industria 4.0. Para la implementación del módulo se utilizaron tanto componentes de hardware como herramientas de software abiertos. La trasmisión se implementó sobre protocolo MQTT. Se incluyeron diversas técnicas de preprocesamiento, como el filtrado gaussiano, la transformación a espacio HVS, la segmentación por color, la extracción de la región de interés, la rotación y el escalado. En el caso de estudio utilizado para comprobar el funcionamiento del módulo, éste mostró eficacia y eficiencia para la realización de las tareas correspondientes.

Citas

Al-Ghaili, A. M., Kasim, H., Hassan, Z., Al-Hada, N. M., Othman, M., Kasmani, R. M., & Shayea, I. (2023). A Review: Image Processing Techniques’ Roles towards Energy-Efficient and Secure IoT. Applied Sciences, 13(4). doi:10.3390/app13042098

Aydemir, G., & Paynabar, K. (2020). Image-Based Prognostics Using Deep Learning Approach. IEEE Transactions on Industrial Informatics, 16(9): 5956-5964. doi:10.1109/TII.2019.2956220

Cannavacciuolo, L., Ferraro, G., Ponsiglione, C., Primario, S., & Quinto, I. (2023). Technological innovation-enabling industry 4.0 paradigm: A systematic literature review. Technovation, 124, 102733. doi:10.1016/j.technovation.2023.102733

Cheng, Y., & Li, B. (2021, 14-16 April 2021). Image Segmentation Technology and Its Application in Digital Image Processing. Paper presented at the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC).

Coady, J., Riordan, A. O., Dooly, G., Newe, T., & Toal, D. (2019, 2-4 Dec. 2019). An Overview of Popular Digital Image Processing Filtering Operations. Paper presented at the 2019 13th International Conference on Sensing Technology (ICST).

Contini, G., Peruzzini, M., Bulgarelli, S., & Bosi, G. (2023). Developing key performance indicators for monitoring sustainability in the ceramic industry: The role of digitalization and industry 4.0 technologies. Journal of Cleaner Production, 414, 137664. doi:10.1016/j.jclepro.2023.137664

Cruz, Y. J., Rivas, M., Quiza, R., Beruvides, G., & Haber, R. E. (2020). Computer Vision System for Welding Inspection of Liquefied Petroleum Gas Pressure Vessels Based on Combined Digital Image Processing and Deep Learning Techniques. Sensors, 20(16). doi:10.3390/s20164505

Di Capaci, R. B., Scali, C., Vallati, C., & Anastasi, G. (2020). A technological demonstrator for cloud-based performance monitoring and assessment of industrial plants: present architecture and future developments. IFAC-PapersOnLine, 53(2): 11656-11661. doi:10.1016/j.ifacol.2020.12.653

Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2023). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456. doi:10.1016/j.eswa.2022.119456

Justus, V., & G R, K. (2022). Intelligent Single-Board Computer for Industry 4.0: Efficient Real-Time Monitoring System for Anomaly Detection in CNC Machines. Microprocessors and Microsystems, 93, 104629. doi:10.1016/j.micpro.2022.104629

Lambán, M. P., Morella, P., Royo, J., & Sánchez, J. C. (2022). Using industry 4.0 to face the challenges of predictive maintenance: A key performance indicators development in a cyber physical system. Computers & Industrial Engineering, 171, 108400. doi:10.1016/j.cie.2022.108400

Lemstra, M. A. M. S., & de Mesquita, M. A. (2023). Industry 4.0: a tertiary literature review. Technological Forecasting and Social Change, 186, 122204. doi:10.1016/j.techfore.2022.122204

Menéndez, D. (2019). Monitoreo de las dimensiones del cordón de soldadura mediante procesamiento de imágenes digitales, Maestría en Ingeniería Asistida por Computadora, Universidad de Matanzas, Matanzas, Cuba.

Mohapatra, A. G., Mohanty, A., Pradhan, N. R., Mohanty, S. N., Gupta, D., Alharbi, M., . . . Khanna, A. (2023). An Industry 4.0 implementation of a condition monitoring system and IoT-enabled predictive maintenance scheme for diesel generators. Alexandria Engineering Journal, 76, 525-541. doi:10.1016/j.aej.2023.06.026

Quiza, R., Hernández, O., Cuba Arana, Y., & Rivas, M. (2023). Propuesta de una arquitectura de monitoreo industrial orientada a Industria 4.0. Revista Cubana de Transformación Digital, 4(3): e222.

Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. M. S. (2023). Machine learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822. doi:10.1016/j.measen.2023.100822

Ren, Z., Fang, F., Yan, N., & Wu, Y. (2022). State of the Art in Defect Detection Based on Machine Vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2): 661-691. doi:10.1007/s40684-021-00343-6

Shi, Z., Hao, H., Zhao, M., Feng, Y., He, L., Wang, Y., & Suzuki, K. (2019). A deep CNN based transfer learning method for false positive reduction. Multimedia Tools and Applications, 78(1): 1017-1033. doi:10.1007/s11042-018-6082-6

Shukla, A., Merugu, S., & Jain, K. (2020). A Technical Review on Image Super-Resolution Techniques. In V. K. Gunjan, S. Senatore, A. Kumar, X.-Z. Gao, & S. Merugu (Eds.), Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies, 543-565. Singapore: Springer Singapore.

Steffens, C. R., Messias, L. R. V., Drews-Jr, P. J. L., & Botelho, S. S. d. C. (2020). CNN Based Image Restoration. Journal of Intelligent & Robotic Systems, 99(3): 609-627. doi:10.1007/s10846-019-01124-9

Vladimir, G., Evgen, I., & Aung, N. L. (2019, 28-31 Jan. 2019). Automatic Detection and Classification of Weaving Fabric Defects Based on Digital Image Processing. Paper presented at the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus).

Descargas

Publicado

2024-03-31

Cómo citar

Hernández Ramírez, O. ., Quiza Sardiñas, R. ., Cuba Arana, Y., & Rivas Santana, M. . (2024). Módulo de captura de imágenes para monitoreo de procesos industriales basado en tecnologías de Industria 4.0. Revista Cubana De Transformación Digital, 5(1), e245:1–9. Recuperado a partir de https://rctd.uic.cu/rctd/article/view/245