Actualización sobre modelos predictivos de manifestaciones graves y mortalidad por COVID-19
Palabras clave:
COVID-19, Gravedad, Modelos predictivos, Resultados de la enfermedadResumen
En este artículo presentamos una revisión de los modelos basados en Inteligencia Artificial (IA), orientados a la predicción de manifestaciones graves provocadas por el virus SARS-COV2. El objetivo de esta revisión fue evaluar los hallazgos más relevantes publicados entre 2020 y 2023, que puedan servir de base al desarrollo de un modelo propio ajustado a las condiciones de nuestro país, caracterizadas por la ausencia de un modelo propio ajustado a la ausencia de una base de datos de datos clínicos bien estructurada y con la presencia de estudios radiológicos apoyados por imágenes de rayos X de tórax (CXR) y tomografía computarizada (CT). Realizamos una revisión sistemática para resumir y evaluar críticamente los estudios disponibles que han desarrollado modelos de pronóstico de COVID-19 basados en IA, que predicen resultados de salud, sobre todo en modelos que utilizan como base las imágenes CXR y CT. Se realizaron búsquedas en tres bases de datos bibliográficas, para identificar artículos publicados sobre modelos de pronóstico que predijeran resultados adversos en pacientes adultos con COVID- 19, incluido el ingreso a la unidad de cuidados intensivos, la necesidad de ventilación mecánica y la mortalidad.
El estudio demostró que los modelos basados en aprendizaje profundo, que utilizan imágenes CXR o CT y su combinación con datos clínicos no complejos, pueden alcanzar un rendimiento significativo en la predicción. Por ello, aquí proponemos una estrategia para abordar este desafío, según las condiciones de nuestro país, combinando la clasificación del grado de gravedad de la afectación pulmonar en imágenes de CXR, datos clínicos de comorbilidades y datos biográficos.
Citas
Albahri, O.S.; Zaidan, A.A.; Albahri, A.S.; Zaidan, B.B.; Abdulkareem, K.H.; Al-Qaysi, Z.T.; Alamoodi, A.H.; Aleesa, A.M.; Chyad, M.A.; Alesa, R.M.; et al.(2020). Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health 2020, 13, 1381–1396.
Almotairi, K.H.; Hussein, A.M.; Abualigah, L.; Abujayyab, S.K.M.; Mahmoud, E.H.; Ghanem, B.O.; Gandomi, A.H.(2023). Impact of Artificial Intelligence on COVID-19 Pandemic: A Survey of Image Processing, Tracking of Disease, Prediction of Outcomes, and Computational Medicine. Big Data Cogn. Comput. 2023, 7, 11. https://doi.org/10.3390/bdcc7010011
Asteris P. G., Kokoris S., Gavriilaki E. et al (2023). Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices. Clinical Immunology 246 (2023) 109218. https://doi.org/10.1016/j.clim.2022.109218.
Bae, J., Kapse, S., Singh, G., Gattu, R., Ali, S., Shah, N., Marshall, C., Pierce. J., Phatak T., Gupta, A., Green, J., Madan, N., Prasanna, P.(2021). Predicting Mechanical Ventilation and Mortality in COVID-19 Using Radiomics and Deep Learning on Chest Radiographs: A Multi- Institutional Study. Diagnostics (Basel). 2021 Sep 30;11(10):1812. doi: 10.3390/diagnostics11101812. PMID: 34679510; PMCID: PMC8535062.
Bansal, A.; Padappayil, R.P.; Garg, C.; Singal, A.; Gupta, M.; Klein, A. (2020). Utility of artificial intelligence amidst the COVID-19 pandemic: A review. J. Med. Syst. 2020, 44, 1–6.
Buttia, C., Llanaj, E., Raeisi-Dehkordi, H. et al. (2023). Prognostic models in COVID-19 infection that predict severity: a systematic review. Eur J Epidemiol 38, 355–372 (2023). https://doi.org/10.1007/s10654-023-00973-x
Duanmu, H., Ren, T., Li, H. et al. (2022). Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients. BioMed Eng OnLine 21, 77. https://doi.org/10.1186/s12938-022-01045-z
Fu. Y, Zeng L., Huang P., Liao M. et al (2023). Severity-onset prediction of COVID-19 via artificial-intelligence analysis of multivariate factors. Heliyon. V 9, I 8, E18764, 2023. https://doi.org/10.1016/j.heliyon.2023.e18764
Gallo Marin, B., Aghagoli, G., Lavine, K., Yang, L., Siff, E.J., Chiang, S.S., Salazar-Mather, T.P., Dumenco, L., Savaria, M.C., Aung, S.N., Flanigan, T., Michelow, I.C. (2021).Predictors of COVID-19 severity: A literature review. Rev Med Virol. 2021 Jan; 31(1):1-10. doi: 10.1002/rmv.2146. Epub 2020 Jul 30. PMID: 32845042; PMCID: PMC7855377.
Garea Llano, E., Castellanos Loaces, H. A., Martínez Montes, E., & González Dalmau, E. (2021a). Estimación del Grado de Afectación Pulmonar por COVID-19 Mediante la Clasificación Supervisada de la Imagen de Rayos X. Revista Cubana De Transformación Digital, 2(3), 4–18. https://doi.org/10.5281/zenodo.5545908.
Garea-Llano, E., Castellanos-Loaces, H.A., Martinez-Montes, E., Gonzalez-Dalmau, E. (2021b). A Machine Learning Based Approach for Estimation of the Lung Affectation Degree in CXR Images of COVID-19 Patients. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_2
Garea-Llano, E., Martinez-Montes, E., Gonzalez-Dalmaus, E. (2022). Affectation index and severity degree by COVID-19 in Chest X-ray images using artificial intelligence. Int Rob Auto J. 2022; 8(3):103‒107. DOI: 10.15406/iratj.2022.08.00252.
Garea-Llano, E., Diaz-Berenguer, A., Sahli, H., Gonzalez-Dalmau, E. (2023). Chest X-Ray Imaging Severity Score of COVID-19 Pneumonia. In: Rodríguez-González, A.Y., Pérez- Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_20.
Gourdeau, D., Potvin, O., Biem, J.H. et al. (2022). Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients. Sci Rep 12, 6193 (2022). https://doi.org/10.1038/s41598-022-10136-9
Hassan, A.; Prasad, D.; Rani, S.; Alhassan, M. (2022). Gauging the Impact of Artificial Intelligence and Mathematical Modeling in Response to the COVID-19 Pandemic: A Systematic Review. BioMed Res. Int. 2022, 2022, 7731618.
Heidari, A., Jafari Navimipour, N., Unal, M. et al. (2022). Machine learning applications for COVID-19 outbreak management. Neural Comput & Applic 34, 15313–15348 (2022). https://doi.org/10.1007/s00521-022-07424-w.
Heo, J., Han, D., Kim, H. J., Kim, D., Lee, Y. K., Lim, D. Seog, W. (2021). Prediction of patients requiring intensive care for COVID-19: development and validation of an integerbased score using data from Centers for Disease Control and Prevention of South Korea. J Intensive Care, 9(1), 16. doi:10.1186/s40560-021-00527-x
Ho, T. T., Park, J., Kim, T., Park, B., Lee, J., Kim, J. Y., Choi, S. (2021). Deep Learning Models for Predicting Severe Progression in COVID-19-Infected Patients: Retrospective Study. JMIR Med Inform, 9(1), e24973. doi:10.2196/24973
Jalaber, C.; Lapotre, T.; Morcet-Delattre, T.; Ribet, F.; Jouneau, S.; Lederlin, M.(2020). Chest CT in COVID-19 pneumonia: A review of current knowledge. Diagn. Interv. Imaging 2020, 101, 431–437.
Jamshidi, M.B.; Roshani, S.; Talla, J.; Lalbakhsh, A.; Peroutka, Z.; Roshani, S.; Sabet, A.; Dehghani, M.; Lotfi, S.; Hadjilooei, F.; et al.(2022). A Review on Potentials of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading. AI 2022, 3, 493–511.
Kumar, A.; Gupta, P.K.; Srivastava, A. (2020). A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 569–573.
Liang, W., Liang, H., Ou, L., Chen, B., Chen, A., Li, C. China Medical Treatment Expert Group for, C. (2020). Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern Med, 180(8), 1081-1089. doi:10.1001/jamainternmed.2020.2033 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218676/)
Lieveld, A. W. E., Azijli, K., Teunissen, B. P., van Haaften, R. M., Kootte, R. S., van den Berk, I.
A. H., Nanayakkara, P. W. B. (2021). Chest CT in COVID-19 at the ED: Validation of the COVID-19 Reporting and Data System (CO-RADS) and CT Severity Score: A Prospective, Multicenter,Observational Study. Chest, 159(3), 1126-1135. doi:10.1016/j.chest.2020.11.026.
Matsumoto, T., Walston, S.L., Walston, M. et al. (2022). Deep Learning–Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs. J Digit Imaging (2022). https://doi.org/10.1007/s10278-022-00691-y
Mbunge, E.; Akinnuwesi, B.; Fashoto, S.G.; Metfula, A.S.; Mashwama, P. (2021). A critical review of emerging technologies for tackling COVID-19 pandemic. Hum. Behav. Emerg. Technol. 2021, 3, 25–39.
Moher D, Liberati A, Tetzlaff J, et al. (2009). Reprint--preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 2009;89:873−80.
Naudé,W.(2020). Artificial Intelligence against COVID-19: An Early Review; Institute of Labor Economics: Bonn, Germany, 2020.
Okoli C (2015). A guide to conducting a standalone systematic literature review. Commun Assoc Inf Syst 2015;37:43.
Olowolayemo, A., Yasin, M., Raashid S. M. (2023). Predicting Mortality Risk of Covid-19 Patients Using Chest X-Rays. International Journal on Perceptive and Cognitive Computing, 9(1), 33–43.
Ortiz, A., Trivedi, A., Desbiens, J. et al. (2022). Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci Rep 12, 1716 (2022). https://doi.org/10.1038/s41598-022-05532-0
Panagiotis G. Asteris, Styliani Kokoris, Eleni Gavriilaki, et al (2023). Early prediction of COVID- 19 outcome using artificial intelligence techniques and only five laboratory indices, Clinical Immunology, Volume 246, 2023, 109218, ISSN 1521-6616, https://doi.org/10.1016/j.clim.2022.109218.
Portal-Diaz, J.A., Lovelle-Enríquez, O., Perez-Diaz, M. et al. (2022). New patch-based strategy for COVID-19 automatic identification using chest x-ray images. Health Technol. 12, 1117–1132 (2022). https://doi.org/10.1007/s12553-022-00704-4
Quiroz, J. C., Feng, Y. Z., Cheng, Z. Y., Rezazadegan, D., Chen, P. K., Lin, Q. T., Cai, X. R. (2021). Development and Validation of a Machine Learning Approach for Automated Severity Assessment of COVID-19 Based on Clinical and Imaging Data: Retrospective Study. JMIR Med Inform, 9(2), e24572. doi:10.2196/24572 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879715/).
Rasheed, J.; Jamil, A.; Hameed, A.A.; Al-Turjman, F.; Rasheed, A. (2021). COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 153–175
Rahimi, I.; Chen, F.; Gandomi, A.H. (2021). A review on COVID-19 forecasting models. Neural Comput. Appl. 2021, 1–11.
Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. (2020). Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2020, 14, 4–15
Swapnarekha, H.; Behera, H.S.; Nayak, J.; Naik, B. (2020). Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. Chaos Solitons Fractals 2020, 138, 109947.
Tanboga, I. H., Canpolat, U., Cetin, E. H. O., Kundi, H., Celik, O., Caglayan, M., . . .Topaloglu, S. (2021). Development and validation of clinical prediction model to estimate the probability of death in hospitalized patients with COVID-19: Insights from a nationwide database. J Med Virol, 93(5), 3015-3022. doi:10.1002/jmv.26844.
Tranfield D, Denyer D, Smart P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 2003;14:207−22.
Verzellesi L, Botti A, Bertolini M, Trojani V, Carlini G, Nitrosi A, Monelli F, Besutti G, Castellani G, Remondini D, et al. Machine and Deep Learning Algorithms for COVID-19 Mortality Prediction Using Clinical and Radiomic Features. Electronics. 2023; 12(18):3878. https://doi.org/10.3390/electronics12183878
Wendland. P., Schmitt V., Zimmermann J , Hager L., Gopel S., Schenkel-Hager C., Kschischo M (2023). Machine learning models for predicting severe COVID-19
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Eduardo Garea Llano, Evelio Gonzalez Dalmau
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.