Nodos Knime para ajustar modelos usando la biblioteca de clases BiCIAM

Autores/as

  • Taday González Chaveco Universidad Tecnológica de La Habana "José Antonio Echeverría"
  • Cynthia Porras Nodarse Universidad Tecnológica de La Habana "José Antonio Echeverría"
  • Alejandro Rosete Suárez Universidad Tecnológica de La Habana "José Antonio Echeverría"

Palabras clave:

ajuste de modelos; BiCIAM; Knime; optimización de modelos.

Resumen

En muchos problemas de la vida, se conoce la forma de un modelo matemático que lo describe, por medio de expresiones con parámetros que deben ser ajustados a cada situación concreta. El ajuste de esos modelos muchas veces implica la solución de un problema de optimización que busca los valores de los parámetros que minimizan la diferencia entre lo que indica el modelo y los datos reales. Estos problemas se pueden resolver utilizando metaheurísticas, lo cual, por lo general, requiere de habilidades en programación. BiCIAM es una biblioteca de clases que resuelve problemas de optimización utilizando metaheurísticas, pero solo personas con conocimientos de programación pueden hacer uso de ella. En el presente trabajo se propone la implementación de nuevos nodos en Knime que optimicen y ajusten modelos matemáticos, utilizando BiCIAM. Con estos nodos se podrán resolver modelos de optimización sin necesidad de programar, se podrán ajustar modelos no lineales de carácter predictivo y los datos podrán ser analizados utilizando los nodos estadísticos que brinda Knime.

Citas

Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Díaz, M., . . . Xhafa, F. (2002). MALLBA: A Library of Skeletons for Combinatorial Optimisation. Presentado en: Euro-Par 2002, Parallel Processing, 8th International Euro-Par Conference, Paderborn, Germany.

Bernardin, L., Chin, P., DeMarco, P., Geddes, K., Hare, D., Heal, K., . . . Monagan, M. (2011). Maple programming guide: Citeseer.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., . . . Wiswedel, B. (2009). KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter, 11(1), 26-31.

Biembengut, M. S., y Hein, N. (2004). Modelación matemática y los desafíos para enseñar matemática. Educación matemática, 16(2), 105-125.

Binumol, S., Rao, S., & Hegde, A. V. (2020). Multiple Nonlinear Regression Analysis for the Stability of Non-overtopping Perforated Quarter Circle Breakwater. Journal of Marine Science and Application, 19(2), 293-300. doi:10.1007/s11804-020-00145-3

Brakke, K. A. (1994). Surface evolver manual. Mathematics Department, Susquehanna Univerisity, Selinsgrove, PA, 17870(2.24), 20.

Brauer, F. (2005). The Kermack–McKendrick epidemic model revisited. Mathematical biosciences, 198(2), 119-131.

Bussieck, M. R. & Meeraus, A. (2004). General Algebraic Modeling System (GAMS). In J. Kallrath (Ed.), Modeling Languages in Mathematical Optimization (pp. 137-157). Boston, MA: Springer US.

Ceruto, T., Lapeira, O., Tonch, A., Plant, C., Espin, R., & Rosete, A. (2014). Mining medical data to obtain fuzzy predicates. Lecture Notes in Computer Science. Vol. 8649 (pp. 103-118): Springer.

Clewett, A. J. (1986). The Minitab Statistical Package. Journal of the Operational Research Society, 37(12), 1201-1202. doi:10.1057/jors.1986.204

Covid19CubaData. (2020, 2 de junio de 2020). Tablero estadístico interactivo sobre la COVID-19 en Cuba 2020. Recuperado de https://covid19cubadata.github.io/#cuba

Cunningham, K. y Schrage, L. (2004). The LINGO Algebraic Modeling Language. In J. Kallrath (Ed.), Modeling Languages in Mathematical Optimization (pp. 159-171). Boston, MA: Springer US.

Chapra, S. C., Canale, R. P., Ruiz, R. S. G., Mercado, V. H. I., Díaz, E. M., y Benites, G. E. (2007). Métodos numéricos para ingenieros (Vol. 5). México: McGraw-Hill.

Dreo, J., Aumasson, J.P., Tfaili, W., & Siarry, P. (2007). Adaptive learning search, a new tool to help comprehending metaheuristics. International Journal on Artificial Intelligence Tools, 16(03), 483-505.

El observador. (2020, 18 Mayo de 2020). COVID-19: Estadísticas. Recuperado de https://observador.cr/covid19-estadisticas/

Fajardo, J. (2015). Soft Computing en Problemas de Optimización Dinámicos. (Ph.D. Thesis), Universidad de Granada, España.

Fajardo, J., Masegosa, A. D., & Pelta, D. A. (2016). An algorithm portfolio for the dynamic maximal covering location problem. Memetic Computing, 9(2), 141-151. doi:10.1007/s12293-016-0210-5

Fajardo, J., Porras, C., Sanchez, L., & Estrada, D. E. (2017). Software tool for model and solve the maximum coverage location problem, a case study: Locations police officers. Revista de Investigación Operacional (RIO), 38(2), 141-149.

Friswell, M., & Mottershead, J. E. (2013). Finite element model updating in structural dynamics (Vol. 38): Springer Science & Business Media.

Garcia-López, J. M., Ilchenko, K., & Nazarenko, O. (2017). Optimization Lab Sessions: Major Features and Applications of IBM CPLEX, Cham.

Gay, D. M. (2015). The AMPL Modeling Language: An Aid to Formulating and Solving Optimization Problems, Cham.

Gupta, A. K. (2014). Numerical Methods using MATLAB (1st ed.). USA: Apress.

Infante Abreu, A. L., Díaz Hernández, R., André Ampuero, M., Rosete Suárez, A., Fajardo Calderín, J., y Escalera Fariñas, K. (2015). Solución al problema de conformación de equipos de proyectos de software utilizando la biblioteca de clases BICIAM. Revista Cubana de Ciencias Informáticas, 9, 126-140.

Jaszkiewicz, A., & Dąbrowski, G. (2010). MOMHLIB++: Multiple Objective Metaheuristics Library in C++. Recuperado de http://www.swmath.org/software/4708

López Jiménez, A. P., Espert Alemany, V., Carlos Alberola, M., y Martínez Solano, F. J. (2003). Metodología para la calibración de modelos de calidad de aguas. Ingeniería del agua, 10(4), 501-516.

Maischberger, M. (2011). COIN-OR METSlib a Metaheuristics Framework in Modern C++. Firenze University. Recuperado de https://projects.coin-or.org/metslib

Medina Mendieta, J. F., Cortés Cortés, M. E., Cortés Iglesias, M., Pérez Fernández, A. d. C., y Manzano Cabrera, M. (2020). Estudio sobre modelos predictivos para la COVID-19 en Cuba. MediSur, 18(3), 431-442.

Mendieta, J. FM., Cortés, M. E. C., y Iglesias, M. C. (2020). Ajuste de curvas de crecimiento poblacional aplicadas a la COVID-19 en Cuba. Revista Habanera de Ciencias Médicas, 19, 3.

Mysovskikh, V. I. (2004). Computer Algebra Systems and Symbolic Computations. Journal of Mathematical Sciences, 120(4), 1613-1617. doi:10.1023/B:JOTH.0000017891.69062.9c

Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74): John Wiley & Sons.

Tippmann, S. (2015). Programming tools: Adventures with R. Nature News, 517(7532), 109.

Torres, I., Rosete, A., Cruz, C., y Verdegay, J. L. (2016). Solving a multiobjective truck and trailer routing problem with fuzzy constraints Fuzzy Logic in Its 50th Year (Vol. 341, pp. 237-255): Springer.

Valle, J. A. M. (2020). Predicting the number of total COVID-19 cases and deaths in Brazil by the Gompertz model. Nonlinear Dynamics, 102(4), 2951-2957. doi:10.1007/s11071-020-06056-w

Villalobos-Arias, M. (2020). Estimation of population infected by Covid-19 using regression Generalized logistics and optimization heuristics. arXiv preprint arXiv:2004.01207.

Walpole, R. E., Myers, R. H., Myers, S. L., y Ye, K. (2012). Probabilidad y estadística para ingeniería y ciencias. Norma, 162, 157.

Zhu, J. (2003). DEA Excel Solver Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver (pp. 263-283). Boston, MA: Springer US.

Descargas

Publicado

2021-03-07

Cómo citar

González Chaveco, T. ., Porras Nodarse, C. ., & Rosete Suárez, A. . (2021). Nodos Knime para ajustar modelos usando la biblioteca de clases BiCIAM . Revista Cubana De Transformación Digital, 2(1), 115–129. Recuperado a partir de https://rctd.uic.cu/rctd/article/view/102

Número

Sección

Artículos originales - Parte II