
8
REVISTA CUBANA
DE TRANSFORMACIÓN DIGITAL
Manejo de datos OOD en la generación de imágenes sintéticas: revisión
del estado del arte
Arbolaez Espinosa, A., García Lorenzo, M.M., Ruíz González, Y., Bello
Pérez, R.E.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training of wasserstein GANs.
Advances in Neural Information Processing Systems, 2017-December.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). GANs trained by a two time-scale
update rule converge to a local Nash equilibrium. Advances in Neural Information Processing Systems,
2017-December. https://doi.org/10.18034/ajase.v8i1.9
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 2020-December.
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T. (2020). Training generative adversarial networks
with limited data. Advances in Neural Information Processing Systems, 2020-December.
Kirichenko, P., Izmailov, P., & Wilson, A. G. (2020). Why normalizing flows fail to detect out-of-distribution data.
Advances in Neural Information Processing Systems, 2020-December.
LeVine, W., Pikus, B., Phillips, J., Norman, B., Gil, F. A., & Hendryx, S. (2024). Out-of-Distribution Detection &
Applications With Ablated Learned Temperature Energy. ArXiv Preprint ArXiv:2401.12129.
Li, Y., Chen, G., Chen, Y., & Xiong, B. (2024). SeTAR: Out-of-Distribution Detection with Selective Low-Rank
Approximation. NeurIPS. https://doi.org/https://doi.org/10.48550/arXiv.2406.12629
Liu, W., Wang, X., Owens, J. D., & Li, Y. (2020). Energy-based out-of-distribution detection. Advances in Neural
Information Processing Systems, 2020-December.
Mahapatra, D., Bozorgtabar, B., & Garnavi, R. (2019). Image super-resolution using progressive generative adversarial
networks for medical image analysis. Computerized Medical Imaging and Graphics, 71.
https://doi.org/10.1016/j.compmedimag.2018.10.005
Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Do deep generative models know
what they don’t know? 7th International Conference on Learning Representations, ICLR 2019.
Nitsch, J., Itkina, M., Senanayake, R., Nieto, J., Schmidt, M., Siegwart, R., … Cadena, C. (2021). Out-of-distribution
detection for automotive perception. 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), 2938–2943.
Rayavarapu, S. M., & Sasibhushana Rao, G. (2025). Exploración de modelos generativos profundos para una mejor
generación de datos en la miocardiopatía hipertrófica. Ingenius Revista de Ciencia y Tecnología, (34).
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution Image Synthesis with Latent
Diffusion Models. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2022-June. https://doi.org/10.1109/CVPR52688.2022.01042
Sharma, P., Kumar, M., Sharma, H. K., & Biju, S. M. (2024). Generative adversarial networks (GANs): Introduction,
Taxonomy, Variants, Limitations, and Applications. Multimedia Tools and Applications, 83(41).
https://doi.org/10.1007/s11042-024-18767-y