Justus, V., & G R, K. (2022). Intelligent Single-Board Computer for Industry 4.0: Efficient Real-Time
Monitoring System for Anomaly Detection in CNC Machines. Microprocessors and Microsystems, 93, 104629.
doi:10.1016/j.micpro.2022.104629
Lambán, M. P., Morella, P., Royo, J., & Sánchez, J. C. (2022). Using industry 4.0 to face the challenges of
predictive maintenance: A key performance indicators development in a cyber physical system. Computers &
Industrial Engineering, 171, 108400. doi:10.1016/j.cie.2022.108400
Lemstra, M. A. M. S., & de Mesquita, M. A. (2023). Industry 4.0: a tertiary literature review. Technological
Forecasting and Social Change, 186, 122204. doi:10.1016/j.techfore.2022.122204
Menéndez, D. (2019). Monitoreo de las dimensiones del cordón de soldadura mediante procesamiento de
imágenes digitales, Maestría en Ingeniería Asistida por Computadora, Universidad de Matanzas, Matanzas, Cuba.
Mohapatra, A. G., Mohanty, A., Pradhan, N. R., Mohanty, S. N., Gupta, D., Alharbi, M., . . . Khanna, A. (2023).
An Industry 4.0 implementation of a condition monitoring system and IoT-enabled predictive maintenance scheme
for diesel generators. Alexandria Engineering Journal, 76, 525-541. doi:10.1016/j.aej.2023.06.026
Quiza, R., Hernández, O., Cuba Arana, Y., & Rivas, M. (2023). Propuesta de una arquitectura de monitoreo
industrial orientada a Industria 4.0. Revista Cubana de Transformación Digital, 4(3): e222.
Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. M. S. (2023). Machine
learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822.
doi:10.1016/j.measen.2023.100822
Ren, Z., Fang, F., Yan, N., & Wu, Y. (2022). State of the Art in Defect Detection Based on Machine Vision.
International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2): 661-691.
doi:10.1007/s40684-021-00343-6
Shi, Z., Hao, H., Zhao, M., Feng, Y., He, L., Wang, Y., & Suzuki, K. (2019). A deep CNN based transfer learning
method for false positive reduction. Multimedia Tools and Applications, 78(1): 1017-1033. doi:10.1007/s11042-018-
6082-6
Shukla, A., Merugu, S., & Jain, K. (2020). A Technical Review on Image Super-Resolution Techniques. In V. K.
Gunjan, S. Senatore, A. Kumar, X.-Z. Gao, & S. Merugu (Eds.), Advances in Cybernetics, Cognition, and Machine
Learning for Communication Technologies, 543-565. Singapore: Springer Singapore.
Steffens, C. R., Messias, L. R. V., Drews-Jr, P. J. L., & Botelho, S. S. d. C. (2020). CNN Based Image Restoration.
Journal of Intelligent & Robotic Systems, 99(3): 609-627. doi:10.1007/s10846-019-01124-9
Vladimir, G., Evgen, I., & Aung, N. L. (2019, 28-31 Jan. 2019). Automatic Detection and Classification of
Weaving Fabric Defects Based on Digital Image Processing. Paper presented at the 2019 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus).