
REVISTA CUBANA
DE TRANSFORMACIÓN DIGITAL
Propuesta de una arquitectura de monitoreo industrial orientada a Industria 4.0
Quiza Sardiñas R., Hernández Ramírez, O., Cuba Arana, Y., Rivas Santana, M.
9
Digital Image Processing and Deep Learning Techniques. Sensors, 20(16). doi:10.3390/
s20164505
Cruz, Y. J., Rivas, M., Quiza, R., Villalonga, A., Haber, R. E., & Beruvides, G. (2021). Ensemble of
convolutional neural networks based on an evolutionary algorithm applied to an industrial
welding process. Computers in Industry, (133): 103530. doi:10.1016/j.compind.2021.103530
Djeddi, C., Hafaifa, A., Iratni, A., Hadroug, N., & Chen, X. (2021). Robust diagnosis with high
protection to gas turbine failures identification based on a fuzzy neuro inference monitoring
approach. Journal of Manufacturing Systems, (59): 190-213. doi:10.1016/j.jmsy.2021.02.012
Domínguez-Bolaño, T., Campos, O., Barral, V., Escudero, C. J., & García-Naya, J. A. (2022). An
overview of IoT architectures, technologies, and existing open-source projects. Internet of
things, (20): 100626. doi:10.1016/j.iot.2022.100626
Donta, P. K., Srirama, S. N., Amgoth, T., & Annavarapu, C. S. R. (2022). Survey on recent advan-
ces in IoT application layer protocols and machine learning scope for research directions.
Digital Communications and Networks, 8(5): 727-744. doi:10.1016/j.dcan.2021.10.004
Free Software Foundation. (2022). GNU General Public License. Retrieved from https://www.
gnu.org/licenses/gpl-3.0.html
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2023). An integrated outlook of Cyber–Phy-
sical Systems for Industry 4.0: Topical practices, architecture, and applications. Green Te-
chnologies and Sustainability, 1(1): 100001. doi:10.1016/j.grets.2022.100001
Kowalikova, P., Polak, P., & Rakowski, R. (2020). e Challenges of Defining the Term “Indus-
try 4.0”. Society, 57(6): 631-636. doi:10.1007/s12115-020-00555-7
Li, H., Ren, H., Liu, Z., Huang, F., Xia, G., & Long, Y. (2022). In-situ monitoring system for
weld geometry of laser welding based on multi-task convolutional neural network model.
Measurement, (204): 112138. doi:10.1016/j.measurement.2022.112138
Nuttah, M. M., Roma, P., Lo Nigro, G., & Perrone, G. (2023). Understanding blockchain appli-
cations in Industry 4.0: From information technology to manufacturing and operations
management. Journal of Industrial Information Integration, (33): 100456. doi:10.1016/j.
jii.2023.100456
Saravanan, G., Parkhe, S. S., akar, C. M., Kulkarni, V. V., Mishra, H. G., & Gulothungan, G.
(2022). Implementation of IoT in production and manufacturing: An Industry 4.0 approach.
Materials Today: Proceedings, (51): 2427-2430. doi:10.1016/j.matpr.2021.11.604
Srivastava, R., Avasthi, V., & R․, K. P. (2023). Deep convolutional neural network for partial dis-
charge monitoring system. Advances in Engineering Software, (180): 103407. doi:10.1016/j.
advengsoft.2022.103407
omas, J. K., Crasta, H. R., Kausthubha, K., Gowda, C., & Rao, A. (2021). Battery monito-
ring system using machine learning. Journal of Energy Storage, (40): 102741. doi:10.1016/j.
est.2021.102741
Xiao, H., Hu, W., Liu, G., & Zhou, H. (2023). Edge computing-based unified condition mo-
nitoring system for process manufacturing. Computers & Industrial Engineering, (177):
109032. doi:10.1016/j.cie.2023.109032