Multiclasificador homogéneo para detección de bots en el comercio electrónico
revista cubana
de transformación digital
chꢀꢁꢁꢀꢂꢃꢄꢀ, H. J., cꢅpꢅꢆꢇ Pꢅꢆéz, n., dꢀꢈz Pꢈꢂꢉꢇ, H., mꢇꢆꢅꢂꢇ eꢁpꢀꢂꢇ, m.
based on wavelets. ACM Transactions on Multimedia Computing, Communications and
Applications, 14(1s). https://doi.org/10,1145/3183506
Bermúdez, M. D.-C. (2022). Gestión de Gobierno basada en ciencia e innovación: avances y
desafíos. Anales de la Academia de Ciencias de Cuba, 12(2): 12-35. http://www.revistac-
cuba.cu/index.php/revacc/article/view/e1235
Cabri, A., Suchacka, G., Rovetta, S., & Masulli, F. (2018). Online Web Bot Detection Using a
Sequential Classification Approach. 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International Conference on
SmartCity;IEEE4thIntl. ConferenceonDataScienceandSystems. https://doi.org/10,1109/
HPCC/SmartCity/DSS.2018.00252
Daya, A. A., Salahuddin, M. A., Limam, N., & Boutaba, R. (2019). A Graph-Based Machine
Learning Approach for Bot Detection. IFIP/IEEE International Symposium on Integrated
Network Management, Washington DC, USA, April 2019, April.
Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier Sys-
tems, pp. 1-15.
Echevarría, D. P., Espino, M. M., Pando, H. D., & Chissingui, H. J. (2022). Comercio Electró-
nico Random Forest For Bot Detection In E-Comerce. Infomática - XVIII Convención y
Feria Internacional.
Garcia, S., Grill, M., Stiborek, J., & Zunimo, A. (2014). An empirical comparison of botnet de-
tection methods. Computers and Security Journal, Elsevier, 45: 100-123. https://doi.org/
http://dx.doi.org/10,1016/j.cose.2014.05.011
Garcia, S., Grill, M., Stiborek, J., Zunimo, A., Dietterich, T. G., Suchacka, G., Wotzka, D., Chen,
H., He, H., Starr, A., Deng, J., Dong, W., Socher, R., Li, L. L.-J., Li, K., Fei-Fei, L., Balla, A.,
Stassopoulou, A., Dikaiakos, M. D., … Greensmith, J. (2020). Artificial Intelligence - A
Modern Approach. Computers & Security, 8(1): 1-6. https://doi.org/10,1007/s11416-020-
0
0368-6
Han,J.,Kamber,M.,&Pei,J.(2012).Dataminingconceptsandtechniques,thirdedition.Morgan
Kaufmann Publishers. http://www.amazon.de/Data-Mining-Concepts-Techniques-Ma-
nagement/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
Haq, S., & Singh, Y. (2018). Botnet Detection using Machine Learning. 2018 Fifth Internatio-
nal Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 240-245. ht-
tps://doi.org/10,1109/PDGC.2018.8745912
Imperva. (2022). 2022 Imperva Bad Bot Report - Evasive Bots Drive Online Fraud. www.im-
perva.com
Rahman, R. U., & Tomar, D. S. (2020). reats of price scraping on e-commerce websites:
attack model and its detection using neural network. Journal of Computer Virology and
Hacking Techniques, 17(1): 75-89. https://doi.org/10,1007/s11416-020-00368-6
Rovetta, S., Suchacka, G., & Masulli, F. (2020). Bot recognition in a Web store: An approach
based on unsupervised learning. Journal of Network and Computer Applications, 157,
102577. https://doi.org/https://doi.org/10,1016/j.jnca.2020,102577